3.1912 \(\int \frac{(a+b x) \left (a^2+2 a b x+b^2 x^2\right )^2}{d+e x} \, dx\)

Optimal. Leaf size=122 \[ -\frac{(b d-a e)^5 \log (d+e x)}{e^6}+\frac{b x (b d-a e)^4}{e^5}-\frac{(a+b x)^2 (b d-a e)^3}{2 e^4}+\frac{(a+b x)^3 (b d-a e)^2}{3 e^3}-\frac{(a+b x)^4 (b d-a e)}{4 e^2}+\frac{(a+b x)^5}{5 e} \]

[Out]

(b*(b*d - a*e)^4*x)/e^5 - ((b*d - a*e)^3*(a + b*x)^2)/(2*e^4) + ((b*d - a*e)^2*(
a + b*x)^3)/(3*e^3) - ((b*d - a*e)*(a + b*x)^4)/(4*e^2) + (a + b*x)^5/(5*e) - ((
b*d - a*e)^5*Log[d + e*x])/e^6

_______________________________________________________________________________________

Rubi [A]  time = 0.124295, antiderivative size = 122, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 31, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.065 \[ -\frac{(b d-a e)^5 \log (d+e x)}{e^6}+\frac{b x (b d-a e)^4}{e^5}-\frac{(a+b x)^2 (b d-a e)^3}{2 e^4}+\frac{(a+b x)^3 (b d-a e)^2}{3 e^3}-\frac{(a+b x)^4 (b d-a e)}{4 e^2}+\frac{(a+b x)^5}{5 e} \]

Antiderivative was successfully verified.

[In]  Int[((a + b*x)*(a^2 + 2*a*b*x + b^2*x^2)^2)/(d + e*x),x]

[Out]

(b*(b*d - a*e)^4*x)/e^5 - ((b*d - a*e)^3*(a + b*x)^2)/(2*e^4) + ((b*d - a*e)^2*(
a + b*x)^3)/(3*e^3) - ((b*d - a*e)*(a + b*x)^4)/(4*e^2) + (a + b*x)^5/(5*e) - ((
b*d - a*e)^5*Log[d + e*x])/e^6

_______________________________________________________________________________________

Rubi in Sympy [F]  time = 0., size = 0, normalized size = 0. \[ \frac{\left (a + b x\right )^{5}}{5 e} + \frac{\left (a + b x\right )^{4} \left (a e - b d\right )}{4 e^{2}} + \frac{\left (a + b x\right )^{3} \left (a e - b d\right )^{2}}{3 e^{3}} + \frac{\left (a + b x\right )^{2} \left (a e - b d\right )^{3}}{2 e^{4}} + \frac{\left (a e - b d\right )^{4} \int b\, dx}{e^{5}} + \frac{\left (a e - b d\right )^{5} \log{\left (d + e x \right )}}{e^{6}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate((b*x+a)*(b**2*x**2+2*a*b*x+a**2)**2/(e*x+d),x)

[Out]

(a + b*x)**5/(5*e) + (a + b*x)**4*(a*e - b*d)/(4*e**2) + (a + b*x)**3*(a*e - b*d
)**2/(3*e**3) + (a + b*x)**2*(a*e - b*d)**3/(2*e**4) + (a*e - b*d)**4*Integral(b
, x)/e**5 + (a*e - b*d)**5*log(d + e*x)/e**6

_______________________________________________________________________________________

Mathematica [A]  time = 0.146822, size = 167, normalized size = 1.37 \[ \frac{b e x \left (300 a^4 e^4+300 a^3 b e^3 (e x-2 d)+100 a^2 b^2 e^2 \left (6 d^2-3 d e x+2 e^2 x^2\right )+25 a b^3 e \left (-12 d^3+6 d^2 e x-4 d e^2 x^2+3 e^3 x^3\right )+b^4 \left (60 d^4-30 d^3 e x+20 d^2 e^2 x^2-15 d e^3 x^3+12 e^4 x^4\right )\right )-60 (b d-a e)^5 \log (d+e x)}{60 e^6} \]

Antiderivative was successfully verified.

[In]  Integrate[((a + b*x)*(a^2 + 2*a*b*x + b^2*x^2)^2)/(d + e*x),x]

[Out]

(b*e*x*(300*a^4*e^4 + 300*a^3*b*e^3*(-2*d + e*x) + 100*a^2*b^2*e^2*(6*d^2 - 3*d*
e*x + 2*e^2*x^2) + 25*a*b^3*e*(-12*d^3 + 6*d^2*e*x - 4*d*e^2*x^2 + 3*e^3*x^3) +
b^4*(60*d^4 - 30*d^3*e*x + 20*d^2*e^2*x^2 - 15*d*e^3*x^3 + 12*e^4*x^4)) - 60*(b*
d - a*e)^5*Log[d + e*x])/(60*e^6)

_______________________________________________________________________________________

Maple [B]  time = 0.005, size = 302, normalized size = 2.5 \[{\frac{{b}^{5}{x}^{5}}{5\,e}}+{\frac{5\,{b}^{4}{x}^{4}a}{4\,e}}-{\frac{{b}^{5}{x}^{4}d}{4\,{e}^{2}}}+{\frac{10\,{b}^{3}{x}^{3}{a}^{2}}{3\,e}}-{\frac{5\,{b}^{4}{x}^{3}ad}{3\,{e}^{2}}}+{\frac{{b}^{5}{x}^{3}{d}^{2}}{3\,{e}^{3}}}+5\,{\frac{{b}^{2}{x}^{2}{a}^{3}}{e}}-5\,{\frac{{b}^{3}{x}^{2}{a}^{2}d}{{e}^{2}}}+{\frac{5\,{b}^{4}{x}^{2}a{d}^{2}}{2\,{e}^{3}}}-{\frac{{b}^{5}{x}^{2}{d}^{3}}{2\,{e}^{4}}}+5\,{\frac{{a}^{4}bx}{e}}-10\,{\frac{{a}^{3}{b}^{2}dx}{{e}^{2}}}+10\,{\frac{{a}^{2}{d}^{2}{b}^{3}x}{{e}^{3}}}-5\,{\frac{a{d}^{3}{b}^{4}x}{{e}^{4}}}+{\frac{{d}^{4}{b}^{5}x}{{e}^{5}}}+{\frac{\ln \left ( ex+d \right ){a}^{5}}{e}}-5\,{\frac{\ln \left ( ex+d \right ){a}^{4}bd}{{e}^{2}}}+10\,{\frac{\ln \left ( ex+d \right ){a}^{3}{b}^{2}{d}^{2}}{{e}^{3}}}-10\,{\frac{\ln \left ( ex+d \right ){a}^{2}{b}^{3}{d}^{3}}{{e}^{4}}}+5\,{\frac{\ln \left ( ex+d \right ) a{b}^{4}{d}^{4}}{{e}^{5}}}-{\frac{\ln \left ( ex+d \right ){b}^{5}{d}^{5}}{{e}^{6}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int((b*x+a)*(b^2*x^2+2*a*b*x+a^2)^2/(e*x+d),x)

[Out]

1/5*b^5/e*x^5+5/4*b^4/e*x^4*a-1/4*b^5/e^2*x^4*d+10/3*b^3/e*x^3*a^2-5/3*b^4/e^2*x
^3*a*d+1/3*b^5/e^3*x^3*d^2+5*b^2/e*x^2*a^3-5*b^3/e^2*x^2*a^2*d+5/2*b^4/e^3*x^2*a
*d^2-1/2*b^5/e^4*x^2*d^3+5*b/e*a^4*x-10*b^2/e^2*a^3*d*x+10*b^3/e^3*d^2*a^2*x-5*b
^4/e^4*d^3*a*x+b^5/e^5*d^4*x+1/e*ln(e*x+d)*a^5-5/e^2*ln(e*x+d)*a^4*b*d+10/e^3*ln
(e*x+d)*a^3*b^2*d^2-10/e^4*ln(e*x+d)*a^2*b^3*d^3+5/e^5*ln(e*x+d)*a*b^4*d^4-1/e^6
*ln(e*x+d)*b^5*d^5

_______________________________________________________________________________________

Maxima [A]  time = 0.720596, size = 348, normalized size = 2.85 \[ \frac{12 \, b^{5} e^{4} x^{5} - 15 \,{\left (b^{5} d e^{3} - 5 \, a b^{4} e^{4}\right )} x^{4} + 20 \,{\left (b^{5} d^{2} e^{2} - 5 \, a b^{4} d e^{3} + 10 \, a^{2} b^{3} e^{4}\right )} x^{3} - 30 \,{\left (b^{5} d^{3} e - 5 \, a b^{4} d^{2} e^{2} + 10 \, a^{2} b^{3} d e^{3} - 10 \, a^{3} b^{2} e^{4}\right )} x^{2} + 60 \,{\left (b^{5} d^{4} - 5 \, a b^{4} d^{3} e + 10 \, a^{2} b^{3} d^{2} e^{2} - 10 \, a^{3} b^{2} d e^{3} + 5 \, a^{4} b e^{4}\right )} x}{60 \, e^{5}} - \frac{{\left (b^{5} d^{5} - 5 \, a b^{4} d^{4} e + 10 \, a^{2} b^{3} d^{3} e^{2} - 10 \, a^{3} b^{2} d^{2} e^{3} + 5 \, a^{4} b d e^{4} - a^{5} e^{5}\right )} \log \left (e x + d\right )}{e^{6}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((b^2*x^2 + 2*a*b*x + a^2)^2*(b*x + a)/(e*x + d),x, algorithm="maxima")

[Out]

1/60*(12*b^5*e^4*x^5 - 15*(b^5*d*e^3 - 5*a*b^4*e^4)*x^4 + 20*(b^5*d^2*e^2 - 5*a*
b^4*d*e^3 + 10*a^2*b^3*e^4)*x^3 - 30*(b^5*d^3*e - 5*a*b^4*d^2*e^2 + 10*a^2*b^3*d
*e^3 - 10*a^3*b^2*e^4)*x^2 + 60*(b^5*d^4 - 5*a*b^4*d^3*e + 10*a^2*b^3*d^2*e^2 -
10*a^3*b^2*d*e^3 + 5*a^4*b*e^4)*x)/e^5 - (b^5*d^5 - 5*a*b^4*d^4*e + 10*a^2*b^3*d
^3*e^2 - 10*a^3*b^2*d^2*e^3 + 5*a^4*b*d*e^4 - a^5*e^5)*log(e*x + d)/e^6

_______________________________________________________________________________________

Fricas [A]  time = 0.288397, size = 350, normalized size = 2.87 \[ \frac{12 \, b^{5} e^{5} x^{5} - 15 \,{\left (b^{5} d e^{4} - 5 \, a b^{4} e^{5}\right )} x^{4} + 20 \,{\left (b^{5} d^{2} e^{3} - 5 \, a b^{4} d e^{4} + 10 \, a^{2} b^{3} e^{5}\right )} x^{3} - 30 \,{\left (b^{5} d^{3} e^{2} - 5 \, a b^{4} d^{2} e^{3} + 10 \, a^{2} b^{3} d e^{4} - 10 \, a^{3} b^{2} e^{5}\right )} x^{2} + 60 \,{\left (b^{5} d^{4} e - 5 \, a b^{4} d^{3} e^{2} + 10 \, a^{2} b^{3} d^{2} e^{3} - 10 \, a^{3} b^{2} d e^{4} + 5 \, a^{4} b e^{5}\right )} x - 60 \,{\left (b^{5} d^{5} - 5 \, a b^{4} d^{4} e + 10 \, a^{2} b^{3} d^{3} e^{2} - 10 \, a^{3} b^{2} d^{2} e^{3} + 5 \, a^{4} b d e^{4} - a^{5} e^{5}\right )} \log \left (e x + d\right )}{60 \, e^{6}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((b^2*x^2 + 2*a*b*x + a^2)^2*(b*x + a)/(e*x + d),x, algorithm="fricas")

[Out]

1/60*(12*b^5*e^5*x^5 - 15*(b^5*d*e^4 - 5*a*b^4*e^5)*x^4 + 20*(b^5*d^2*e^3 - 5*a*
b^4*d*e^4 + 10*a^2*b^3*e^5)*x^3 - 30*(b^5*d^3*e^2 - 5*a*b^4*d^2*e^3 + 10*a^2*b^3
*d*e^4 - 10*a^3*b^2*e^5)*x^2 + 60*(b^5*d^4*e - 5*a*b^4*d^3*e^2 + 10*a^2*b^3*d^2*
e^3 - 10*a^3*b^2*d*e^4 + 5*a^4*b*e^5)*x - 60*(b^5*d^5 - 5*a*b^4*d^4*e + 10*a^2*b
^3*d^3*e^2 - 10*a^3*b^2*d^2*e^3 + 5*a^4*b*d*e^4 - a^5*e^5)*log(e*x + d))/e^6

_______________________________________________________________________________________

Sympy [A]  time = 2.66422, size = 202, normalized size = 1.66 \[ \frac{b^{5} x^{5}}{5 e} + \frac{x^{4} \left (5 a b^{4} e - b^{5} d\right )}{4 e^{2}} + \frac{x^{3} \left (10 a^{2} b^{3} e^{2} - 5 a b^{4} d e + b^{5} d^{2}\right )}{3 e^{3}} + \frac{x^{2} \left (10 a^{3} b^{2} e^{3} - 10 a^{2} b^{3} d e^{2} + 5 a b^{4} d^{2} e - b^{5} d^{3}\right )}{2 e^{4}} + \frac{x \left (5 a^{4} b e^{4} - 10 a^{3} b^{2} d e^{3} + 10 a^{2} b^{3} d^{2} e^{2} - 5 a b^{4} d^{3} e + b^{5} d^{4}\right )}{e^{5}} + \frac{\left (a e - b d\right )^{5} \log{\left (d + e x \right )}}{e^{6}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((b*x+a)*(b**2*x**2+2*a*b*x+a**2)**2/(e*x+d),x)

[Out]

b**5*x**5/(5*e) + x**4*(5*a*b**4*e - b**5*d)/(4*e**2) + x**3*(10*a**2*b**3*e**2
- 5*a*b**4*d*e + b**5*d**2)/(3*e**3) + x**2*(10*a**3*b**2*e**3 - 10*a**2*b**3*d*
e**2 + 5*a*b**4*d**2*e - b**5*d**3)/(2*e**4) + x*(5*a**4*b*e**4 - 10*a**3*b**2*d
*e**3 + 10*a**2*b**3*d**2*e**2 - 5*a*b**4*d**3*e + b**5*d**4)/e**5 + (a*e - b*d)
**5*log(d + e*x)/e**6

_______________________________________________________________________________________

GIAC/XCAS [A]  time = 0.276324, size = 350, normalized size = 2.87 \[ -{\left (b^{5} d^{5} - 5 \, a b^{4} d^{4} e + 10 \, a^{2} b^{3} d^{3} e^{2} - 10 \, a^{3} b^{2} d^{2} e^{3} + 5 \, a^{4} b d e^{4} - a^{5} e^{5}\right )} e^{\left (-6\right )}{\rm ln}\left ({\left | x e + d \right |}\right ) + \frac{1}{60} \,{\left (12 \, b^{5} x^{5} e^{4} - 15 \, b^{5} d x^{4} e^{3} + 20 \, b^{5} d^{2} x^{3} e^{2} - 30 \, b^{5} d^{3} x^{2} e + 60 \, b^{5} d^{4} x + 75 \, a b^{4} x^{4} e^{4} - 100 \, a b^{4} d x^{3} e^{3} + 150 \, a b^{4} d^{2} x^{2} e^{2} - 300 \, a b^{4} d^{3} x e + 200 \, a^{2} b^{3} x^{3} e^{4} - 300 \, a^{2} b^{3} d x^{2} e^{3} + 600 \, a^{2} b^{3} d^{2} x e^{2} + 300 \, a^{3} b^{2} x^{2} e^{4} - 600 \, a^{3} b^{2} d x e^{3} + 300 \, a^{4} b x e^{4}\right )} e^{\left (-5\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((b^2*x^2 + 2*a*b*x + a^2)^2*(b*x + a)/(e*x + d),x, algorithm="giac")

[Out]

-(b^5*d^5 - 5*a*b^4*d^4*e + 10*a^2*b^3*d^3*e^2 - 10*a^3*b^2*d^2*e^3 + 5*a^4*b*d*
e^4 - a^5*e^5)*e^(-6)*ln(abs(x*e + d)) + 1/60*(12*b^5*x^5*e^4 - 15*b^5*d*x^4*e^3
 + 20*b^5*d^2*x^3*e^2 - 30*b^5*d^3*x^2*e + 60*b^5*d^4*x + 75*a*b^4*x^4*e^4 - 100
*a*b^4*d*x^3*e^3 + 150*a*b^4*d^2*x^2*e^2 - 300*a*b^4*d^3*x*e + 200*a^2*b^3*x^3*e
^4 - 300*a^2*b^3*d*x^2*e^3 + 600*a^2*b^3*d^2*x*e^2 + 300*a^3*b^2*x^2*e^4 - 600*a
^3*b^2*d*x*e^3 + 300*a^4*b*x*e^4)*e^(-5)